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Introduction

After vigorous development for over twenty years, Computational Fluid

Dynamics (CFD) in the field of aerospace engineering has arrived at a turning

point toward maturity. Many algorithms have been developed and the feasibility

of CFD has been demonstrated. Now, after so many demonstrations, the next

question is how to use CFD for realistic applications.

Aerospace CFD is now being asked to catch up with the sophistication of

wind tunnels, which are nearly a century old for aerodynamic research.[1, 2]

Such expectation is probably motivated by the accelerated computerization of

our work environment. We use computers to manipulate equations, calculate

numbers, plot figures and write reports. CFD programs will be just one more of

software packages like word processor and spreadsheet programs. Then, we

won't study CFD, but we will simply use it. As computers become more

affordable, CFD is expected to be a better scientific and engineering tool.

As computer hardware has become more advanced, CFD researchers

have explored more complicated, computer intensive applications. The 1980's

can be categorized with the compressible Reynolds averaged Navier-Stokes

equations and three dimensional steady flow simulations, and the 90's as the

era for unsteady flow simulations.[ 3]

Among various unsteady phenomena, unsteady transonic phenomena

are of great interest because they include many important problems in unsteady

aerodynamics,[ 4] such as flutter, limit cycle oscillations, maneuver

aerodynamics, control reversal, buzz, gust response, active controls, unsteady

shock-vortex interaction. Furthermore, local regions of unsteady transonic flows

are found over a wide range of freestream speeds, for example, on the noses of

bluff re-entry bodies at hypersonic speeds, on bluff bodies at low subsonic



speeds, and on many wings near maximum lift at low speeds due to the high

local suctions in the leading-edge region.HI Theoretical analysis of such

phenomena is complicated by the presence of mixed flow, embedded shocks,

separation and vortical flow. To simulate such flow fields, computations based

on the unsteady Navier-Stokes equations are needed.

This paper discusses issues related to algorithm development for the

Euler/Navier-Stokes equations, code validation[ 5] and recent applications of

CFD for unsteady aerodynamics. Algorithm development is a fundamental

element for a good CFD program. Code validation tries to bridge the reliability

gap between CFD and experiment. Many of the recent applications also take a

multidisciplinary approach,[ s] which is a future trend for CFD applications.

Algorithm Development

Structured vs. Unstructured Grids

Use of structured grids has been a driving force for CFD development (for

example, see Ref. 7). Zoning and topological constraint of structured grids are

often tedious for complex geometry in three dimensions, but numerical

generation of structured grids for individual zones is relatively easy.

Corresponding flow solvers can be highly efficient by taking advantage of

structured grids. In addition, structured grids are indispensable for the high-

aspect-ratio grids required for viscous flow calculations.

The zonal approach has been widely used in CFD applications because

of its efficiency and versatility. However, basic questions remain in numerical

techniques for handling the zonal interface. Most of the zonal methods use

nonconservative interpolation at the zonal boundary.[ 8] Questions about how

much can conservation be relaxed at the interface, time accuracy, viscous

effects, turbulence model, etc. still remain to be answered. Errors are often

negligible but they should be addressed quantitatively.

Since the late 80's, unstructured grid methods have attracted attention

(for example, see Ref. 9-11). However, the methodology has not become fully

productive yet, especially in three dimensions. The methodology consists of two

parts: the unstructured grid generation and the unstructured flow solver.

Complete unstructured grid generation is sometimes overwhelming and not

always necessary. One can construct a mostly structured grid with a locally
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unstructured grid more easily. Or one can adapt a hybrid approach such as the

FDM-FEM (finite-difference method and finite-element method) approach[ 12]

and the prismatic grid approach.[ 13] Therefore, the majority of CFD work will

remain with the structured grid approach. On the other hand, the unstructured-

grid flow solver has more flexibility than the structured-grid flow solver. Thus the

choice between the unstructured- and structured-grid flow solvers will be the

choice between flexibility and efficiency on available computer architecture.

Freestream Capturing on Moving Grid

Freestream capturing in the discretized equation is a fundamental requirement

of CFD.[ 14] The geometric conservation law (GCL) is known to be important for

the moving grid case.[ is] However, what is not always known is that it is only a

necessary condition, not a sufficient one.[ 16] For example, one cannot use the

GCL condition to compute time metrics.

Let's start from the integral form of the conservation law for a given cell:

where Q is the vector of conserved quantities, F is the flux and v is the velocity

of the surface element. For the freestream with Q_ and F., one obtains

To satisfy Eq. (2) for any Q.. and F., we have

_ndS = 0, (3)

and

V(t2)- V(t,) : S:,2}n. vdSdt. (4)

Equation (3) is the mathematical representation of a closed cell, which is a

requirement for any grid system to satisfy numerical conservation. The right-

hand side of Eq. (4) represents a sum of the volume swept by each cell surface

between the time tl and t=. Thus, the equation indicates that the sum is equal to

the change of the total volume. Both Eqs. (3) and (4) can be satisfied

numerically by applying standard formula for computing surfaces and volumes.

Now let's look at the time differential form of Eq. (1):

d _QdV +_n'(F-vQ)dS =O. (5)
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For any Q. and F., we have Eq. (3) and

-_t = _ n . vdS . (6)

The straightforward discretization of Eq. (6) evaluates the right-hand side only at

time level t_, but the resulting discretized equation is not necessarily valid. To

preserve the freestream, we have to go back to the discretized form of Eq. (4).

When we start from the differential form of Eq. (1) in both space and time,

the differential forms of Eqs. (3) and (4) need to be satisfied. The discretized,

differential form of Eq. (4) results in the so-called GCL condition. However,

neither of the finite-difference approximations of those equations will be valid.

To satisfy those equations, we have to go back to Eqs. (3) and (4) again and

construct freestream capturing metrics. In three dimensions, one grid point in

the finite-difference grid can be regarded as surrounded by eight finite-volume

cells. Finite-difference metric terms can be derived from finite-volume geometric

quantities over those eight cells.

Upwind vs. Central-Difference Schemes

Many CFD applications have used the central-difference (CD) scheme. Since

the CD scheme is unstable, it is always used with artificial dissipation. The

original dissipation model was the fourth-order dissipation model with a scalar

coefficient.[ 17] Then the coefficient was replaced with the spectral radius of the

flux Jacobian.[ 1el To mimic the TVD (total variation diminishing) method,[ 19] the

combination of the second and fouth-order dissipation was also introduced. The

latest development in the CD scheme is the matrix dissipation, which further

mimics the upwind scheme by accounting all eigenvalues associated with the

flux Jacobian.[ 2o]

During the 80's, upwind schemes were developed, studied in various

aspects, and widely accepted along with the TVD scheme.[ 21] The turning point

of the upwind study was Ref. 22. Originally, the upwind algorithms were studied

to obtain a better shock wave profile. However, Ref. 22 reported that the Roe

upwind scheme[ 23] is also good at capturing a boundary layer profile. Further

studies[ 2o,24] revealed that the Roe upwind scheme shows good grid

convergence for the boundary layer profile and the vortical flow field. On the

other hand, the CD scheme with the spectral-radius scalar dissipation shows
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poor grid convergence. Since the operation count of the Roe scheme was

comparable to that of the CD scheme with the matrix dissipation, the Roe

scheme became very popular.
Behind its success, several failures of the Roe scheme were found in the

late 80's.[ 14,25-27] Limitations of the linearized Riemann solver emerged and led

to the development of the HLLE (Harten-Lax-van Leer-Einfeldt) scheme.[ 28]

Currently, Wada's modified HLLE scheme is the best derivative of the HLLE

scheme.[ 29] Also there was a renewed interest in the flux vector splitting

schemes, which led to the AUSM (advection upstream splitting method)[ 3o] and

the state vector splitting schemes.[ 31,32]

Extension of those upwind algorithms to multi-dimensions was performed

by using dimensional splitting. The inadequacy of such an extension is

revealed when the grid is not aligned to the typical flow features, such as shock

and shear waves. Since the late 80's, several researchers have attempted to

develop robust schemes to replace the dimensional splitting upwind schemes.

Interested readers may refer to, for example, Refs. 31-33 along with a critical

paper, Ref. 34.

Another important issue to be addressed is vortex capturing.[35, 3s] It is a

common experience that a computed vortex quickly dissipates as soon as the

vortex separates from a solid surface. A successful vortex capturing scheme will

be of great interest.

Second-Order vs. Higher-Order Schemes

There is always interest in higher-order schemes because the use of such

schemes can increase computational efficiency. However, researchers often

concentrate on higher-order interpolation techniques or elaborate limiter

functions and miss the whole picture of the scheme.

Let's consider the space discretized form of the two-dimensional Euler

equations in the curvilinear coordinates as

(2,+ ' + = 0, (7)

where E_.,,=.j =/_(QL, Q,,_,.,,=j) is the numerical flux and the subscripts L and R

indicate the left and right states at the point (i+l/2,j). Linear interpolation of QL

and QR leads to a second-order-accurate flux. However, higher-order
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representation of (2, and Q_ do not necessarily lead to higher-order accuracy.

Even if we have exact values of (2, and OR, the flux difference itself remains

second-order accurate:

="+"',: (s)

Thus, higher-order numerical fluxes must be used in higher-order

representations of the spatial derivatives to obtain higher-order accurate

evaluations of these derivatives.[ 37] In the method based on the integral form of

the governing equation, they should be used in higher-order integrals of the

fluxes along the boundaries of each computational ce11.[37] In either way, the

metric terms must be evaluated in the higher-order manner as well. When we

change the representations of the metric terms, we have to go back to the

discretized forms of Eqs. (3) and (4) to check the freestream capturing. Higher-

order representations of the metric terms do not necessarily satisfy those

equations. In addition, we have to consider the proper boundary conditions

because of the enlarged stencil of grid points to obtain higher-order accuracy.

All-in-all, extension beyond the second-order accuracy requires much

additional work and care.

Implicit vs. Explicit Schemes

Diagonal Beam-Warming,j38. 39] LU-ADI (lower-upper factored alternating

direction implicit)[40, 41] and LU-SGS (lower-upper factored symmetric Gauss-

Seidel)[ 42.43] methods are the popular implicit methods. The computational

effort necessary for such implicit inversions is actually less than that necessary

for evaluating the explicit terms because of the costly dissipation or upwind

formulation. This means that they are faster than the multistage explicit

schemes.[ 18] Also a time step size can be much larger for the implicit scheme

than one for the explicit scheme. Thus, most of the practical unsteady

applications have been carded out using implicit methods.

The major drawback of those schemes is that they are limited to first-

order accuracy in time. Use of a small time step usually gives satisfactory

results.[ 41] Otherwise, one can utilize an iterative approach with a higher-order

time difference representation.[39,43, 44] Subiterations could also remove

linearization and factorization errors. The iterative approach results in a
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'multistage' implicit scheme. Research in multistage schemes coupled with the

multigrid technique for unsteady computations may be interesting.[ 4s]

Those implicit methods still have the stability limit in allowable time step

sizes. Although the ADI method is not necessarily stable in three dimensions,

the LU-SGS method is unconditionally stable. A main source of the limitation in

the LU-SGS method could be the linearization. Improvements in the

linearization may be necessary. Because of the complex formula of TVD upwind

schemes, however, it is impractical to construct a second-order accurate

noniterative implicit scheme using true Jacobians.[ 46]

Unsteady computations often require an order of magnitude more

computational time than steady-state computations. For example, for the

transonic flow computation about an oscillating wing,[ 41] a steady-state solution

is necessary as an initial condition. A few cycles of unsteady computations are

needed to obtain a periodic solution. At least two periodic solutions with

different time step sizes are needed to verify the time accuracy. In total, more

than an order of magnitude increase in time over a single steady-state

computation is required. The development of an efficient time-accurate

algorithm is highly desirable.

Turbulence Models

The Balclwin-Lomax model[ 47] is probably the most widely used model in the

CFD community. It is simple and robust. It works fairly well for both attached and

vortical flows. However, even for such a simple model, careful implementation is

required: one constant is supposed to be C,,_ = 1.0 (4 0.25) and the definition of
--2

Urine¢-2 ( U D/¥ _ --2-u;=_,-a_=) is supposed to be a,=-_a]p.= (not the maximum of a

interested readers may refer to the original paper for the definitions of those

variables).[ 48] Furthermore, for moving-grid cases, grid velocity should be

subtracted from _.

The 90's seemed to open with the eye-catching success of the Johnson-

King model to simulate a transonic flow over the ONERA M6 wing.[4o] Later, it

was found that the result was "largely fortuitous" due to a coding error and a

large dissipation by the CD scheme with the spectral-radius scalar

dissipation.[SOl
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It is well known that turbulence modeling is the pacing item of CFD.

Turbulence researchers tend to go up to higher-order closure models.[ 5t] In

aerodynamics, however, we don't usually need to know any of the turbulence

statistical quantities. Coordinated efforts should be placed toward improving the

lower-order models, such as Johnson-King and one-equation models.[ s2-54] In

addition, the importance of unsteadiness should be addressed.

Code Validation for Unsteady Computations

To implement CFD in the design cycles for use in industry, it is very important to

provide estimates of the accuracy of the numerical predictions. This led to a

program of CFD validation at NASA.[ 5] Comparisons of the numerical results

with experimental and other numerical data are the essence of the validation

process. However, simple comparisons are not informative enough to properly

validate CFD. A complete validation requires a careful study of all aspects of the

numerical simulation.

CFD simulation consists of three modeling procedures: physical

modeling, numerical modeling and geometric modeling. Physical modeling is

the derivation of the governing equations including turbulence models.

Numerical modeling is the algorithm used to solve the governing equations and

boundary conditions, such as upwind schemes and numerical implementation

of boundary conditions. Geometric modeling is the numerical representation of

the geometry itself. Code validation needs to address each of the three

modeling procedures.

Geometric modeling seems straightforward but could have significant

effects on computed results. Let's consider a wing geometry. A computational

grid is usually generated for a wing alone. Experimental model consists of the

wing mounted on the tunnel wall and the other tunnel walls. Before making

quantitative comparisons, we have to know the effects of differences in

geometries. Furthermore, it is very common to modify the wing geometry

because of the lack of data or simplicity for grid generation. For example, exact

definition of the wing tip is often ignored for computational convenience.

However, it could have a significant effect in the solutions.[ 55] More complicated

model geometry may include minor differences at many locations. In addition,
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real models are not rigid. Model deformation in the experiment has to be

considered.

Validating numerical modeling has a difficulty in defining grid quality. A

universal measure is required to define the grid quality for various grids,

topologies and zoning. Such measure should monitor local errors as well as

global errors. Under a reasonable grid quality, grid convergence will validate

the numerical modeling. As the grid and time-step sizes are refined, numerical

solutions should converge asymptotically. The actual grid convergence may be

difficult to show because of the cost and time limitations. At the very least the

asymptotic behavior should be demonstrated. In addition, if the CD scheme is

used, the amount of dissipation has to be checked carefully.

For physical modeling, the turbulence model is the most important pacing

item because the governing equations of the fluid motion are well established.

Performance of turbulence models may be coupled with numerical modeling as

shown in Ref. 50. Geometric modeling is also important especially in the

transonic regime. The boundary-layer transition is usually neglected as well.

Thus, validation is difficult and time consuming and should proceed carefully.

After all those issues are addressed, we may still have a problem with

validating against experiment. A major source of the remaining discrepancies

could be facility limitations in the experiment. Importance of good

experimentation should be emphasized for CFD validation.

Besides the uncertaintities of unsteady experiments,[ 4] comparison of

unsteady computations with experiments has a difficulty as well. In steady state,

comparison of surface pressures gives a certain measure of agreement.

However, in an unsteady case, comparison of instantaneous pressures does

not give a good measure because of the phase error that has to be considered.

Therefore, computations of periodic flows are a logical step to extend CFD

validation from steady to unsteady applications.

When the time history of local pressures shows sinusoidal variations, the

pressures may be described by the first harmonic of a Fourier series:

p= p, + &v"coswt + zXp-sinwt = p, +lzXplcos(cot- 9), (9)

where p and p, denote the local and mean pressures, while z_o' and zXp" are

the components of the harmonic.[ s61 Or and 9 represents the magnitude

and phase, respectively, of unsteady pressures. For transonic flows, particularly
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in the region of a shock wave, this expression is no longer true. In such cases

higher harmonics may need to be added to the Fourier series. Despite those

higher order harmonics, the first harmonic of a Fourier series gives a good

measure of unsteady variations.

Toward the analysis of flutter, extensive research has been performed for

transonic flows past oscillating wings in both CFD and experiment.J4,41, 5s-sg]

Coordinated validation efforts should be focused on such cases.

Recent Applications

This section reviews recent unsteady applications under NASA programs

because they demonstrate the most advanced, computer intensive simulations.

The major activities can be categorized into the Euler and Navier-Stokes

computations. The latest Euler computations use the unstructured-grid

approach, while the Navier-Stokes computations mostly use the structured-grid

approach. The applications listed below also indicate the future trend toward

the multidisciplinary approach.

Unstructured-Grid Euler Computations

A series of work has been done by a group at Langley Research Center toward

aeroelastic simulations including flutter analysis.[So, 61] An application of a

hovering rotor has been done at Ames Research Center by using adaptive grid

refinement.[ 62] Extension to dynamic adaption is ongoing.[S3,64]

Structured-Grid Navler-Stokes Computations

• Aeroelasticity: A continuous effort has been performed by a group at Ames

to develop aeroelastic computer codes.[ 41,6s,66] The latest development couples

shell finite-element structures with the Navier-Stokes solver.[ 67] Tail buffet at a

high angle of attack has also been simulated.[ ss] Conventional flutter analysis

coupled with the structured-grid, Euler/Navier-Stokes solver has also been

done at Langley.[ 69]

• Artificial Heart: Computation of a flow through the artificial heart device is a

significant spin-off of aerospace CFD done at Ames. The latest computation

includes oscillating valves.[ 70]

10



• Helicopter Rotors: Extensive research of rotor aerodynamics has been

performed at Ames, including acoustic propagation.[ 43.71.72] Recently, an

overset grid approach has been investigated.[ 73] The unstructured-grid

approach mentioned above is also a part of this group's activity. Assessment of

turbulence models for highly separated flow is ongoing.[ 74]

• SOFIA: The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a

proposed successor of the existing airborne astronomical observatory, the

Kuiper Airborne Observatory (KAO). A large cavity will be placed on the body of

a Boeing 747SP for a telescope. A resonating cavity would endanger both the

aircraft and telescope structure. Density fluctuations in the shear layer also

cause optical fluctuation, which results in blurring of the telescope image. A

numerical study has been performed at Ames to assess the cavity flow fields

using the overset approach.[ 7s]

, Turbomachinery: CFD application for turbomachinery is an area that had

early success in unsteady computations at Ames.[ 7,76,77] Recent studies include

grid adaptation using the structured-unstructured hybrid approach[ 7s] and

extension to acoustic analysis.[ 79]

• Others: Unsteady computations have been performed about a delta-wing in

roll,[ sol a wing-canard configuration undergoing pitching motion,[ sl] wing and

wing-body configurations with oscillating control surfaces,[ 82,83] and a delta

wing equipped with thrust reverser jets descending near the ground.[ e4] These

studies are directing applications of CFD toward flight dynamics and controls.

Chemically Reacting Flow Computations

Although computations of chemically reacting flows are beyond the scope of

this paper, unsteady computations have been done in this area. Interested

readers may refer to Refs. 85-90.

Visualization

The ability to compute streak lines is essential for unsteady flow visualization

because streak lines simulate experimental visualization. Such visualization

has recently been performed at Ames by using the Unsteady Flow Analysis Tool

(UFAT).[ gl] Other flow variables, such as density and pressure, are relatively

easy to visualize because the unsteady flow animation can be generated from a
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sequence of instantaneous plots. However, visualizing unsteady results causes

a major demand on disk storage. Even after some data reduction, several

gigabytes of disk space is often required.

Concluding Remarks

This paper has reviewed several issues of CFD for unsteady aerodynamics.

Basic algorithm issues and procedures necessary for code validation have

been discussed. Sample applications indicate the trend of aerospace CFD

research to multidisciplinary applications.

Toward its maturity as a scientific/engineering tool, software engineering

will be a vital element of CFD.[ 92] Down selection of CFD codes is also

inevitable to develop good, validated software. CFD researchers are

accustomed to writing their own codes. These research codes are efficient in

some sense because of the customization for specific needs. However, the

codes do not communicate with each other and the data are not necessarily

interchangeable. The codes often contain undocumented assumptions. The

specific customization and assumptions of these codes make it very difficult for

other users to tailor these codes for their needs and thus reduce overall

efficiency. Furthermore, debugging and validating every research code will be

overwhelming. Standardization is indispensable for CFD codes to be a solid

tool. Efficiency is also important. Now, a new coordinated approach is required

for CFD research.

On the other hand, the importance of CFD for aerospace engineering is

growing. CFD will serve as a basic tool for multidisciplinary computational

approaches that combine aerodynamics with structural dynamics, controls, and

propulsion.[ 93] Such approaches require sustained teraFLOPS or faster

computers that have massively parallel processors.
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